Paprasta statistinė analizė
Taip pat žiūrėkite:Projektavimo tyrimaiSurinkę kiekybinius duomenis, turėsite daug skaičių. Atėjo laikas atlikti tam tikrą statistinę analizę, kad galėtumėte suprasti savo duomenis ir padaryti iš jų išvadas.
Yra daugybė galimų metodų, kuriuos galite naudoti.
Šiame puslapyje pateikiama trumpa kai kurių labiausiai paplitusių duomenų apibendrinimo metodų santrauka ir paaiškinta, kada naudosite kiekvieną iš jų.
Duomenų apibendrinimas: grupavimas ir vizualizavimas
Pirmas dalykas, susijęs su bet kokiais duomenimis, yra jų apibendrinimas, o tai reiškia, kad jie pateikiami taip, kad geriausiai pasakotų istoriją.
Pradinis taškas paprastai yra pirminių duomenų grupavimas į kategorijas ir (arba) jų vizualizavimas. Pavyzdžiui, jei manote, kad jus gali dominti skirtumai pagal amžių, pirmiausia turėtumėte sugrupuoti duomenis pagal amžiaus kategorijas, galbūt dešimties ar penkerių metų dalis.
Viena iš dažniausiai naudojamų apibendrinimo metodų yragrafikai, ypač juostų diagramos, kuriose rodomi visi eilės duomenų taškai, arba histogramos, kurios yra juostinės diagramos, sugrupuotos į platesnes kategorijas.
Žemiau pateiktas pavyzdys, kuriame naudojami trys duomenų rinkiniai, sugrupuoti pagal keturias kategorijas. Tai gali būti, pavyzdžiui, „vyrai“, „moterys“ ir „kita / lytis nenurodyta“, suskirstyti pagal amžiaus grupes 20–29, 30–39, 40–49 ir 50–59.

Histogramos alternatyva yra alinijinė diagrama, kuris brėžia kiekvieną duomenų tašką ir sujungia juos linija. Tie patys duomenys, kaip ir juostų diagramoje, rodomi žemiau esančioje linijinėje diagramoje.

Kaip galite atsiminti iš mokyklos, nesunku ranka nubrėžti histogramą ar linijinę diagramą, tačiau įvedę duomenis į lentelę skaičiuoklės jas nupieš greitai ir lengvai, taip sutaupydami problemų. Jie net padės jums per procesą.
Vizualizuokite savo duomenis
Svarbus braižo braižas yra tai, kad jis suteikia jums tiesioginį duomenų vaizdą. Tai svarbu, nes iš karto parodoma, ar jūsų duomenys yra sugrupuoti, paskirstyti, linksta į dideles ar mažas vertes, ar susitelkę aplink centrinį tašką. Tai taip pat parodys, ar turite kokių nors „pašalinių“ reikšmių, tai yra labai didelių ar labai mažų duomenų reikšmių, kurias galbūt norėsite išskirti iš analizės, arba bent jau dar kartą patikrinkite, ar jos teisingos.
Visada verta nubraižyti diagramą prieš pradedant bet kokią tolesnę analizę, kad tik pažiūrėtumėte į savo duomenis.
Taip pat galite rodyti sugrupuotus duomenis askritulinė diagrama, pavyzdžiui, šis.

Skritulinės diagramosyra geriausia naudoti, kai jus domina santykinis kiekvienos grupės dydis ir kokia visos grupės dalis tinka kiekvienai kategorijai, nes jie labai aiškiai parodo, kurios grupės yra didesnės.
Peržiūrėkite mūsų puslapį:Diagramos ir grafikaiNorėdami gauti daugiau informacijos apie skirtingų tipų grafikus ir diagramas.
Vietos matai: Vidurkiai
vidutinissuteikia jums informacijos apie bet kokio bandomo efekto dydį, kitaip tariant, ar jis didelis, ar mažas. Yra trys vidurkio matai: vidurkis, mediana ir režimas.
Žiūrėkite mūsų puslapįVidurkiaidaugiau apie kiekvieno skaičiavimą ir greitą skaičiuoklę.
Kai dauguma žmonių sako, kad vidutinis, jie kalba apiereiškia. Jis turi pranašumą, kad naudoja visas gautas duomenų vertes ir gali būti naudojamas tolesnei statistinei analizei. Tačiau tai gali būti iškreipta netiesiogiai didelėmis ar mažomis vertybėmis.
Todėl tyrėjai kartais naudojamedianavietoj to. Tai yra visų duomenų vidurio taškas. Mediana nėra iškreipta dėl ekstremalių verčių, tačiau ją sunkiau naudoti tolesnei statistinei analizei.
režimasyra dažniausia duomenų rinkinio reikšmė. Jo negalima naudoti tolesnei statistinei analizei.
Vidurkio, medianos ir režimo reikšmės yranetas pats, todėl iš tikrųjų svarbu aiškiai pasakyti, apie kurį „vidutinį“ jūs kalbate.
Vertinant suvestines priemones: tvirtumas ir efektyvumas
Yra dvi konstrukcijos (idėjos ar koncepcijos), kurios paprastai naudojamos vertinant suvestines vertes, tokias kaip vidurkis, mediana ir būdas. Šitie yratvirtumasirefektyvumas.
-
Patikimumas yra tai, kiek suvestinė priemonė yra jautri duomenų kokybės pokyčiams.
Šie duomenų kokybės pokyčiai gali atsirasti dėl pašalinių reikšmių, ekstremalių verčių abiejose pusėse arba dėl veiksmų, kurių buvo imtasi analizės metu, pavyzdžiui, grupuojant duomenis tolesnei analizei. Tvirta priemonė NETURI jautrumo šiems pokyčiams. Todėl mediana yra tvirtesnė už vidurkį, nes jai įtakos neturi išskirtiniai rodikliai, o grupavimas greičiausiai sukels nedaug pokyčių.
-
Efektyvumas - tai matas, kaip santraukos matas naudoja visus duomenis.
Veiksmingesnė priemonė naudoja daugiau duomenų. Todėl vidurkis yra labai efektyvus, nes jis naudoja visus duomenis.
Todėl šios dvi priemonės dažnai yra prieštaringos: tvirtesnė priemonė greičiausiai bus mažiau efektyvi.
Turėsite nuspręsti, kas yra svarbiau atliekant analizę.
Sklaidos matai: diapazonas, dispersija ir standartinis nuokrypis
Tyrėjai dažnai nori pažvelgti įplistiduomenų, tai yra, kiek duomenys pasklidę visoje įmanomoje matavimo skalėje.
Tam dažnai naudojamos trys priemonės:
diapazonasyra skirtumas tarp didžiausių ir mažiausių verčių. Tyrėjai dažnai cituojatarpkvartilių diapazonas, kuris yra duomenų vidurio pusės diapazonas, nuo 25%, apatinės kvartilės iki 75%, viršutinės kvartilės, vertės (mediana yra 50% reikšmė). Norėdami rasti kvartiles, naudokite tą pačią procedūrą kaip ir mediana, bet vietoj vidurio taško imkite ketvirčio ir trijų ketvirčių taškus.
standartinis nuokrypismatuoja vidutinį sklaidą aplink vidurkį, todėl leidžia suprasti „tipinį“ atstumą nuo vidurkio.
dispersijayra standartinio nuokrypio kvadratas. Juos apskaičiuoja:
- apskaičiuojamas kiekvienos vertės skirtumas nuo vidurkio;
- kiekvieno kvadratas (siekiant pašalinti bet kokius skirtumus tarp aukščiau ir žemiau vidurkio);
- susumuojant kvadratinius skirtumus;
- dalijant iš daiktų skaičiaus atėmus vieną.
Tai suteikiadispersija.
Norėdami apskaičiuotistandartinis nuokrypis, imkite kvadratinę šaknies dispersiją.
Iškreipti
iškreiptimatuoja, kiek simetriškas yra duomenų rinkinys, ar jo vertės yra didesnės, ar mažesnės. Mėginys, kurio vertės yra mažesnės, apibūdinamas kaip neigiamai iškreiptas, o mėginys, kurio didesnės vertės - teigiamai iškreiptas.
Paprastai sakant, kuo labiau iškreiptas mėginys, tuo mažiau sutaps vidurkis, mediana ir būdas.
Išplėstinė analizė
Apskaičiavus keletą pagrindinių verčiųvieta, pvz., vidutinis arba vidutinis,plisti, pvz., diapazonas ir dispersija, ir nustatėiškreipti, galite pereiti prie pažangesnės statistinės analizės ir pradėti ieškoti duomenų šablonų.
Įdomios Straipsniai
- Koučingo įgūdžiai
- Vadovavimas: Rah, Rah! Uh Oh!
- Ar jis apgavikas? 10 neabejotinų ženklų, kad jis tave apgaudinėja!
- Užduoties apdaila
- Kodėl jis jums nesiunčia SMS žinutės?
- Įvadas į geometriją: taškai, linijos, plokštumos ir matmenys
- 5 populiariausi požymiai, rodantys, kad jūsų buvęs nori jūsų sugrąžinti
- 50 puikių klausimų užduoti vaikinui
- 6 baltymų pakuotės daržovės, kurias norite įtraukti į savo mitybos racioną
- Kodėl mažesnio intensyvumo treniruotės yra puikios norint numesti svorio
- Vertybių pridėjimas prie savo prekės ženklo
- El. Paštas jau užaugęs!
- Produktyvumo eksperimentas
- Pakalbėkime apie L&D - prisijunkite prie mūsų #MTtalk!
- #MTtalk: Hierarchijos sutrikdymas